An Artificial Intelligent Technique for Image Enhancement

نویسنده

  • G. Sivarajde
چکیده

A class of neural filter for image enhancement is proposed in this paper. The proposed intelligent filter is carried out in two stages. In first stage the corrupted image is filtered by applying two special classes of decision based filters. Filtered image outputs from decision based filters are suitably combined with a Feed forward neural network in the second stage. The internal parameters of the feed forward neural network are adaptively optimized by training for three well known images. This is quite effective in eliminating impulse noise. Extensive simulation results show that the proposed filter is superior in terms of eliminating impulse noise as well as preserving edges and the results are compared with other existing filters.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Density-Based Histogram Partitioning and Local Equalization for Contrast Enhancement of Images

Histogram Equalization technique is one of the basic methods in image contrast enhancement. Using this method, in the case of images with uniform gray levels (with narrow histogram), causes loss of image detail and the natural look of the image. To overcome this problem and to have a better image contrast enhancement, a new two-step method was proposed. In the first step, the image histogram is...

متن کامل

Image quality enhancement in digital panoramic radiograph

One of the most common positioning errors in panoramic radiography is palatoglossal air space above the apices of the root of maxillary teeth. It causes a radiolucency obscuring the apices of maxillary teeth. In the case of this positioning error, the imaging should be repeated. This causes the patient be exposed to radiation again. To avoid the repetition of exposing harmful X-rays to the pati...

متن کامل

A Deep Model for Super-resolution Enhancement from a Single Image

This study presents a method to reconstruct a high-resolution image using a deep convolution neural network. We propose a deep model, entitled Deep Block Super Resolution (DBSR), by fusing the output features of a deep convolutional network and a shallow convolutional network. In this way, our model benefits from high frequency and low frequency features extracted from deep and shallow networks...

متن کامل

The Application of Multi-Layer Artificial Neural Networks in Speckle Reduction (Methodology)

Optical Coherence Tomography (OCT) uses the spatial and temporal coherence properties of optical waves backscattered from a tissue sample to form an image. An inherent characteristic of coherent imaging is the presence of speckle noise. In this study we use a new ensemble framework which is a combination of several Multi-Layer Perceptron (MLP) neural networks to denoise OCT images. The noise is...

متن کامل

Statistical Wavelet-based Image Denoising using Scale Mixture of Normal Distributions with Adaptive Parameter Estimation

Removing noise from images is a challenging problem in digital image processing. This paper presents an image denoising method based on a maximum a posteriori (MAP) density function estimator, which is implemented in the wavelet domain because of its energy compaction property. The performance of the MAP estimator depends on the proposed model for noise-free wavelet coefficients. Thus in the wa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013